

# A METHOD FOR SHORT-TERM NETWORK SCREENING



## MAROA MUMTARIN, PhD; JONATHAN S. WOOD, PhD



P(B) = Probability of a location having high crash risk irrespective of randomness in a particular week

В

Few publications with proper validation of the analysis method

performance using future data.

The goal of short-term network screening is to identify the road locations most likely to experience crashes in the next few weeks to months (not due to randomness)



Develop a reliable framework for shortterm network screening (i.e., identifying the locations most likely to have crashes in the near-term, not due to





P(A|B) can be calculated from,  $P(not randomly high|high) = \Phi\left(\frac{P(observed) - P(predicted)}{\sqrt{P(predicted)(1 - P(predicted))}}\right)$ 

• Given the observed outcomes and definition of 1 or more crashes making it a high crash location, we have for any week: If Y = 0: P(B) = P(predicted)If Y > 0: P(B) = 1





### Ranking Performance (Crash Risk Calculated from 16 weeks)





Application: Interstates (Iowa, USA) Only 2% of 0.5 mile 98% segments No Crash segments have at (Total 785 least 1 crash miles) in any given week Atleast 1 crash Weekly Crash Data 50000 100000 150000 Data (January, Source: 2023 – Iowa DOT October, 2023) Binary logit model If a segment has 1 or more weekly crashes, Y = 1. For zero

(0) weekly crashes, Y = 0.

Model used 30 weeks of crash data

Validation Method

- **Train** Week- 4, 8, 12, 16, 20, 24, 28, and 30 weeks
- Validation 12 weeks

-4 -3 -2 -1 0 1 2 3

(Observed – Predicted) > 0

N>0



|            |          | -        |             |
|------------|----------|----------|-------------|
| Start Week | End Week | Duration | correlation |
| 1          | 30       | 30       | 0.809       |
| 3          | 30       | 28       | 0.809       |
| 11         | 30       | 20       | 0.809       |
| 7          | 30       | 24       | 0.809       |
| 15         | 30       | 16       | 0.807       |
| 19         | 30       | 12       | 0.805       |
| 23         | 30       | 8        | 0.805       |
| 27         | 30       | 4        | 0.804       |

Rank Correlation for **Different Durations** 



Summary

### crashes on the road segment in any week?

> What is the probability of observing 1 or more



| <ul> <li>Rolling Average of Cra</li> </ul>                                         | ash Risk fo             | r differe                                 | ent combina  | tions of  |  |
|------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|--------------|-----------|--|
| Train week                                                                         |                         |                                           |              |           |  |
| Rank Correlation                                                                   | Rank<br>(Hotspots)      | Crash<br>Count                            | # Concordant | # Discord |  |
| Diet of crach counts in                                                            | 1                       | 4                                         | -            | -         |  |
| Plot of crash counts in                                                            | 2                       | 3                                         | 1            | 0         |  |
| valuation period                                                                   | 3                       | 3                                         | 2            | 0         |  |
| N <sub>c</sub> = If the lower Rank has<br>lower or equal crash                     | 4                       | 5                                         | 2            | 1         |  |
| count than previous rank                                                           | Correlation with Rank = |                                           |              |           |  |
| N <sub>d</sub> = If the lower Rank has<br>higher crash count than<br>previous rank |                         | $\frac{N_{c,adj} - N_d}{N_{c,adj} + N_d}$ |              |           |  |

- Created a reliable method for short-term crash hotspot detection (effectiveness confirmed through validation)
- Utilized a dataset where 98% of records indicated zero (0) crash occurrence.
- This method can be used to identify crash hotspots for rare crash events.

#### Limitations

- Closer investigation is needed to prioritize one hotspot above another
- Application to non-freeway locations is needed to determine optimal approach for different functional classes
- Additional applications (other geographical areas) would provide additional evidence of the validity of the method

This study received partial funding support from the lowa Department of Transportation. Contact: M. Mumtarin - maroa@iastate.edu; J. Wood – jwood2@iastate.edu

